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Resumen: En este documento se detallan los diferentes pasos que se siguieron para
el analisis y el desarrollo de un sistema orientado a la compra y venta de bonos y
acciones del mercado Argentino. El estudio se realiz6 principalmente sobre los
bonos Brady PAR y FRB y las acciones TEAR, YPF, PEREZ, GALICIA y el indice
Merval.

Introduccion

Existen varias estrategias para operar en el mercado, aunque una de las mas usadas es una combinacién entre
el analisis técnico, las noticias y los fundamentos. Estos Gltimos dan una base de confianza o desconfianza
gue puede suavizar 0 acentuar una noticia inesperada, aunque frente a la ausencia de noticias, el analisis
técnico es una referencia muy fuerte para seguir.

El enfoque de esta investigacion esta orientado al desarrollo de modelos validados estadisticamente y luego
seguidos en tiempo real operando de acuerdo a la sefial producida. Normalmente se les da el nombre de
sistemas mecéanicos para significar que la Unica forma de operar con estadisticas de apoyo tales como
méximas pérdidas esperadas, méximo numero de peérdidas seguidas esperadas, etc., es haber medido
correctamente el modelo en el pasado y luego apegarse a él hasta que su desempefio, contrastado con su
pasado, caiga en un determinado nivel.

Medir correctamente el modelo no es una tarea trivial, fundamentalmente debido a la poca cantidad de datos
disponibles y relevantes para el desarrollo del mismo. Es asi que deben usarse diferentes técnicas de
validacion para obtener estadisticas confiables (Pardo 1992).

Un modelo puede estar basado sobre diferentes técnicas, tales como modelos AR y sus derivados, andlisis
técnico, regresion lineal, redes neuronales, algoritmos genéticos, etc. Este documento enfoca las redes
neuronales, debido a su capacidad de encontrar relaciones no lineales en datos con ruido.

La primera parte de este informe trata acerca del andlisis del mercado de capitales en cuanto a su
autocorrelacién o independencia de sus datos. Después de dar una breve resefia sobre la Hipdtesis del
Mercado Eficiente, se veran otras técnicas que intentan encontrar la presencia de relaciones no lineales, tales
como el Analisis Reescalado (Rescaled Range) y la prueba BDS. Para un mejor entendimiento de estos
métodos se repasan conceptos estadisticos como la distribucién normal y la correlacion.

En la segunda parte se presenta lo basico sobre redes neuronales y sus aplicaciones financieras. Un analisis un
poco més detallado se realiza sobre la aplicacion a series de tiempo, ya que este es el objetivo final.

Por ultimo se detallan los resultados del modelo aplicado tanto a los bonos como a las acciones.

Enfoques tradicionales

Un buen punto para comenzar cuando se quiere llegar a un objetivo, es saber donde esta uno parado. En
nuestro caso esto significa conocer cuales son las practicas mas usadas para llevar adelante una cartera de
activos y fundamentalmente cudl es el paradigma aceptado por la comunidad que integra el mercado de
capitales internacionales.

El primero, y quizas mas grande dilema que surge y parece quedar sin respuesta es la predictibilidad del

mercado. ¢Los precios se mueven al azar?. Depende el punto de vista. Un académico dird que si, un trader
dird que no. ¢Quién tiene la raz6n?
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No existe una respuesta simple a esta cuestién, ya que muchos estudios referentes a correlaciones lineales y
no lineales son cuestionados debido a los métodos usados. Ademas, aungue existan personas en el mundo que
venzan el mercado una y otra vez, como es caso de Warren Buffet o Peter Lynch, esta dentro de las
probabilidades el que lo hagan por azar. Al menos eso dicen los defensores del mercado eficiente, aunque no
sepan cdmo medir estas probabilidades.

En 1959 Osborne afirmd que la diferencia de precios del mercado sigue un camino al azar (Random Walk) y
en 1965 Eugene Fama formalizé la Hipdtesis del Mercado Eficiente (EMH). Un mercado eficiente se define
como un gran nimero de participantes racionales que compiten tratando de predecir el mercado de forma tal
de maximizar sus ganancias, y en donde la informacion importante esta a disposicién de todos. En un
mercado eficiente el precio de un activo sera una buena estimacidn de su valor intrinseco (Fama 1965).

En esencia, la EMH dice que el mercado estd compuesto por demasiada cantidad de personas para estar
errado. Cualquier noticia se descuenta en los precios inmediatamente, de manera tal que el activo adquiere el
precio justo, sin ventajas para nadie.

La EMH y los caminos al azar justifican el uso de las herramientas estadisticas tradicionales para el estudio de
los cambios de precios que supuestamente se dan al azar y con distribucién log-normal.

En estos ultimos 30 afios ha habido una gran cantidad de informes que apoyan la eficiencia del mercado, pero
también han surgido muchos investigadores cuyos trabajos sugieren lo contrario. Véase Vaga (1994), Peters
(1991), Peters (1994), Brock (1991), Tsibouris (1995). Por supuesto, las controversias contindan hoy en dia, y
es probable que uno de los motivos sea que el ruido que contienen las series de precios esconda los patrones
que puedan existir.

La distribucién de los retornos

Si tenemos una serie histérica de precios, podemos analizar la distribucién de sus diferencias de precios
diarios de la siguiente manera:

Para evitar que las diferencias de precios al principio de la serie sean menores que al final, debido a un
incremento de los precios (ej. EI Dow Jones a principios del 87 era de unos 2.000 puntos), tomamos
diferencias porcentuales o diferencias de los logaritmos de los precios (de ahi distribucion log-normal).
Intuitivamente sabemos que habra mayor cantidad de cambios de precios “pequefios” que “grandes” y que
estas diferencias seran tanto positivas como negativas. Si construimos un histograma con estas diferencias
obtendremos una aproximacion a una curva de distribucion llamada normal o de gauss.

El siguiente grafico muestra la distribucion de las diferencias logaritmicas del FRB en columnas que indican
la cantidad de observaciones que se encontraron en cada rango. La curva superpuesta es la distribucién
normal.

Las diferencias estan normalizadas, a cada valor se le resta la media y se lo divide por la desviacion estandar.
Para comenzar nuestro analisis centrémonos en la curva ideal de distribucidn, en este caso la curva normal.
Notamos que la curva es simétrica y el maximo valor corresponde a las diferencias de precios cercanas a cero
(en realidad el valor cero da el maximo), y a medida que nos acercamos hacia los extremos su valor va
disminuyendo. A pesar de que no se puede ver en el grafico, los extremos de la curva jamas tocan la linea de
cero, aunque mas alla de £3 su valor es infimo.
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Histogram (FRB2.STA 4v*1724c¢)
y = 1722 *0.3056513 * normal (x; -0; 1)
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Si suponemos que el area total que encierra la curva es 1, entonces para calcular cuél es la probabilidad de
encontrar una diferencia de precios en un rango de valores, sdlo hay que calcular el area correspondiente. Por
ejemplo la probabilidad de que ocurran cambios de precios no més all4 de +2 desviaciones estandar es de
95.44% y no mas alla de +3 de 99.74%.

Si ahora comparamos la distribucion de nuestra serie de precios del FRB con respecto a la normal,
encontramos que es mucho més alta en el centro y que los extremos se extienden con frecuencias observadas
mucho mas alla de 2 6 3 desviaciones estandar. De hecho, de acuerdo a la distribucién normal, en las 1722
diferencias de precios que corresponden al periodo analizado del FRB (Agosto 92 — Mayo 99) deberiamos
haber encontrado unas 5 cuyo valor absoluto fuese mayor que 3 desviaciones estandar, pero encontramos 31.

Existen algunas pruebas estadisticas que comparan cuantitativamente una distribucién con respecto a la
normal. Asi, la kurtosis mide cuanto mas alto es el pico en cero y cuanto mas anchas son las colas. Un valor
de 0 indica una distribuciéon normal. EI FRB tiene una kurtosis de 24, muy lejos de la normal.

La prueba de Shapiro-Wilk mide la correlacion del nimero de observaciones ordenadas por desviaciones
estandar de la distribucion normal y de la distribucién a analizar. El resultado W para este caso es de 0.782,
valor demasiado bajo (W va de 0 a 1) que sugiere una distribucion que se aparta en forma significativa de la
normal. Para mas informacién véase Frees (1996).

En resumen, podemos ver que la distribucion de los retornos porcentuales del FRB no puede ser considerada
normal. Lo mismo pasa con otros bonos y con las acciones o el indice Merval.

La volatilidad

Otro aspecto interesante de los retornos es su dispersion o volatilidad, que se mide con la desviacion estandar.
En el caso de una serie de precios que siguiera un camino al azar (random walk), podriamos medir la
volatilidad de sus retornos en diferentes puntos de la misma y encontrariamos que siempre es la misma.

Cuando se miden en diferentes puntos varios estadisticos, por ejemplo la media y la desviacién estandar, y se
encuentran los mismos valores, se dice que la serie es estacionaria, y su analisis es mas simple que en el caso
de una serie de precios no estacionaria. De hecho normalmente se aplica algun procedimiento para convertir
una serie no estacionaria en estacionaria, si es que es el caso. Por ejemplo, la media de un indice de precios
como el Merval o el Dow Jones, sera distinta segun el periodo que se mida. Para evitar este comportamiento
se la diferencia y se trabaja con estas diferencias o retornos logaritmicos o porcentuales como ya se explicd.
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Si en vez de medir la media, medimos la desviacidn estandar o volatilidad en la serie de retornos de un bono,
una accion o un indice encontraremos cambios abruptos en diferentes periodos. Es precisamente este cambio
de las volatilidades lo que hace tan complejo modelar un activo financiero.

Los dos graficos que siguen muestran, el de la izquierda los retornos de un camino al azar y el de la derecha
los retornos del FRB. Se pueden observar periodos de alta volatilidad y periodos de tranquilidad. EI Gltimo
corresponde a enero del 99, respondiendo a la devaluacion de Brasil.
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En estos graficos también se puede apreciar que un precio real no puede responder a un camino al azar. Para
maés informacién véase Mandelbrot (1999).

Si contamos con una serie de retornos lo suficientemente larga, digamos unas 2.000 observaciones, y vamos
midiendo la volatilidad desde el principio y tomando cada vez mayor cantidad de datos podemos verificar si
hay algun valor al que se converge. En el caso de un camino al azar, rapidamente se converge a la volatilidad
con la que fue generado, pero en el caso de una serie de precios reales no encontraremos ningun valor de
convergencia. Cuando sucede esto se dice que los datos tienen volatilidad infinita. Véase el capitulo 14,
“Fractal Statistics” en Peters (1994).

Las correlaciones

El término correlacion sugiere dos variables (como minimo) que se encuentran relacionadas de alguna
manera. Por ejemplo podriamos suponer que los retornos de una accién que integra un indice estan
correlacionados con los retornos de este indice. La relacion que queremos encontrar 0 que suponemos que
existe es: el retorno de la accion es positivo, entonces el retorno del indice también lo es, y viceversa.

Una manera de comprobarlo es dibujando un grafico de dispersién (scatter plot), como el siguiente, que
corresponde a los retornos diarios de TEAR y Merval durante el afio 1998.

Retornos del Merval

-15 -10 -5 0 5 10 15 20 25
Retornos de TEAR
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Con cada par de valores se coloca un punto en el grafico. Aqui vemos que, cuando los retornos de TEAR
tienden a ser mayores, también sucede lo mismo con los del Merval. El estadistico mas usado para medir la
correlacion entre dos variables es el de Pearson, que mide las relaciones lineales entre las variables y en este
caso es 0.798. El coeficiente de correlacion r puede tomar valores entre —1 y 1. Cuando es 1 existe una
perfecta correlacion lineal, si es —1 significa que cuando una variable sube la otra baja y si es 0 no existe
ninguna correlacion lineal. Cabe aclarar que puede ser que r sea 0 aunque exista una correlacion no lineal
perfecta como es el siguiente caso:

i 1 2 3 45
i 2 -1 0 1 2
yi 4 1 0 1 4

El coeficiente de correlaciéon entre los 5 valores que toman las variables x e y en este ejemplo es 0 aunque
existe una perfecta relacion entre ellas, y = x»2.

Para saber si los retornos de los precios de hoy influiran sobre los de mafiana, hallamos la autocorrelacion,
gue no es mas que una correlacién entre una serie de nimeros y la misma serie desplazada una posicién. Por
ejemplo el siguiente grafico muestra la autocorrelacion de los retornos del Merval en el afio 1998.

Retorno del Merval el dia anterior

Retorno del Merval

Se puede observar que no es tan evidente una relacion lineal, de hecho el coeficiente r es de 0.083. ;Como
sabemos que este coeficiente no es significante? Por otro lado, ;como sabemos que el r de 0.798 hallado entre
los retornos de TEAR y Merval no es casual?. Si queremos estar seguros en un 95% entonces calculamos la
correlacion maxima que tendrian dos series al azar por medio de la siguiente formula:

Max = 2/ \/ﬁ

En donde n es la cantidad de datos. Esto significa que si tuviéramos 100 pares de series aleatorias no seria
extrafio encontrar que 5 de ellas tienen un coeficiente de correlacion mayor que rmax sélo por azar. El valor
0.083 se calculé basandose en 247 valores, por lo que para aceptar un coeficiente estadisticamente
significativo (a un 95% de confianza), éste deberia ser mayor de 0.127. Como no lo es, decimos que el r
encontrado no es significante (Gottman 1981).

Podriamos probar desplazamientos mayores a un dia (;el precio de anteayer influye sobre el de hoy?), pero la
siguiente tabla muestra que no existen correlaciones significativas.

ldia 2dias 3dias 4dias 5dias 6 dias
r 0.083 -0.087 0.006 0.088 0.11 -0.106
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Los fractales

Por medio de la geometria fractal se pueden describir las formas naturales de una manera mas precisa que a
través de la geometria euclidiana. “Un fractal es un objeto en el cual las partes estan, de alguna manera,
relacionadas con el todo” (Peters 1991). “Un fractal es una forma geométrica que consiste en un motivo que
se repite a si mismo en cualquier escala a la que se observe” (Sametband 1994, p 65). Pensemos en un arbol.
Cada rama contiene a su vez ramas mas pequefias que contienen a su vez ramas mas pequefias hasta llegar a la
hoja. Si nos dan a observar dos graficos del mercado, uno diario y otro semanal, pero sin indicar la escala, no
podremos identificarlos. A diferentes escalas, el mercado se ve similar; o dicho de una manera mas precisa,
tiene caracteristicas estadisticas similares. La mayoria de las formas naturales y las series de tiempo se
describen muy bien con fractales.

Una de los aspectos de los objetos fractales es que su dimensién normalmente no es un nimero entero.
Pensemos en una hoja de papel. Tiene largo y ancho, por lo que su dimension es sin lugar a dudas 2. Ahora
hagamos un bollo con ella. ;Cual es su dimensién?. Ya no es mas 2, porque sale del plano, pero tampoco es 3
porque no es un sélido. Su dimensién es un nimero que esta entre 2y 3.

Una serie de datos aleatorios con distribucién normal tiene la capacidad de llenar todo el plano en el que se
dibuja, por lo que su dimension es 2. En cambio, si en la serie, los datos no son totalmente independientes,
sino que existe alguna autocorrelacion, entonces esta serie no podra ocupar todos los puntos del plano porque
su valor futuro estd condicionado por el pasado. En este caso la dimension serd un valor entre 1y 2.

Una de las maneras de medir la dimensién de una serie de datos es a través del exponente de Hurst que es el
tema de la siguiente seccion.

El exponente de Hurst

Alrededor de 1907 y por unos 40 afios, el hidrélogo Harold E. Hurst trabaj6 en el proyecto de una represa en
el rio Nilo en Egipto. La politica de apertura y cierre de las compuertas es algo bastante complejo, debido a
que durante eépocas lluviosas no deben generarse inundaciones y en las sequias no debe dejarse el rio sin agua.
Hurst pensé en un principio que seria l6gico suponer que los factores que determinan la cantidad de agua al
afio (las lluvias) siguen un camino al azar. Cuando él decidié probar esta hipétesis, nos dié una nueva
herramienta estadistica: el exponente de Hurst (Peters 1991). Este puede distinguir series al azar de aquellas
que no lo son.

Basicamente el exponente de Hurst, H de aqui en mas, mide cdmo varia la diferencia entre la maxima y la
minima desviacion acumulada respecto de la media. Si la serie corresponde a un camino aleatorio, entonces
esta variacion debera ser funcién de la raiz cuadrada del tiempo. Esto ya habia sido notado por Einstein
cuando estudié el movimiento browniano que describe el movimiento erratico que realiza una particula
suspendida en un fluido. Einstein encontré que la distancia que cubre la particula es proporcional a la raiz
cuadrada del tiempo en que se mide (Lavenda).

R/S=(a*N)"

R es el rango o la diferencia entre la maxima y la minima desviacion acumulada respecto de la media.
S es la desviacion estandar, por lo que a fin de comparar diferentes series de datos se calcula el rango
“reescalado” (rescaled range) R/S, que seréd proporcional a la cantidad de observaciones elevado a la H.

Si H es 0.5 entonces estamos frente a una serie de datos al azar. Caso contrario la serie de datos contiene
correlaciones lineales o no lineales, de corto y/o largo alcance.

Existe una diferencia muy grande entre H y el coeficiente de correlacion r. H mide relaciones tanto lineales
como no lineales y ademas no se limita a relaciones de datos cercanos sino que puede detectar correlaciones
de largo alcance. Cuando hablamos de relaciones no lineales queremos significar que los cambios en una
variable no son proporcionales a los cambios de la otra.
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Otros dos beneficios de H son que se puede usar con series cuya distribucion no es normal y ademas es capaz
de detectar ciclos no periddicos.

Si H es mayor que 0.5 decimos que la serie es persistente y contiene tendencias. Si, por el contrario, H es
menor que 0.5 decimos que es antipersistente ya que cambia mas a menudo que una serie aleatoria. Hurst
encontro un valor de 0.90 en sus estudios del Nilo e intrigado por este valor tan lejos del esperado estudid
otros fendmenos naturales encontrando en todos ellos valores de H de alrededor de 0.70.

Estos valores de H indican una dependencia entre el pasado y el futuro. Cada observacién lleva una memoria
de todos los sucesos ocurridos en el pasado, al menos tedricamente.

Peters (1991, 1994) midi6 el H de varias series de datos de EEUU y algunos paises de Europa y encontr6
valores que difieren de 0.5 en forma significativa, aunque hay algunos estudios sobre el posible sesgo que
pueden ser introducidos en los calculos del mismo (Moody 1995). Peters también detecté un ciclo no
periddico (que no se repite con la misma frecuencia) de alrededor de 4 afios sobre el Dow Jones.

Los estudios realizados sobre el Merval, el FRB, y algunas de las acciones méas liquidas muestran valores de
H que si bien se apartan de 0.5 no llegan a ser significativos. Uno de los motivos puede ser la poca cantidad
de datos que el célculo de H requiere. En el apéndice se encuentran detalles sobre el algoritmo de célculo y
los valores encontrados.

Mandelbrot demostré que la inversa de H es la dimension fractal. Una serie aleatoria tiene un H de 0.5 por lo
gue su dimensién es 1/0.5=2. Si H es mayor que 0.5, la dimension de la serie de datos sera un nimero menor
que 2.

Los procesos caoticos

Cuando decimos que un sistema se comporta de modo aleatorio, en general estamos asumiendo que existen
tantos factores o grados de libertad a considerar que es imposible predecir el resultado. Dicho de otra manera,
es aleatorio porque es muy complejo. Desde este punto de vista un sistema puede ser modelado como
totalmente predecible, en base por ejemplo a las leyes de Newton, o como totalmente al azar como cuando se
modela un gas compuesto por un nimero muy grande de particulas usando la mecénica estadistica. Pero hacia
1975 gran cantidad de cientificos alrededor del mundo comenzaron a notar un nuevo tipo de movimiento que
hoy llamamos Caos (Alligood 1997). Este movimiento o evolucidn de un sistema parece aleatorio pero no lo
es. Es mas, pasara como aleatorio todas las pruebas tradicionales de estadistica. Tampoco son necesarios
muchos grados de libertad para generarlo. Sistemas muy simples pueden generar caos en que la total
predictibilidad esta disfrazada de aleatoriedad. La clave esta en la sensibilidad a las condiciones iniciales. Esto
significa que si dos sistemas regidos por las mismas leyes hacen su punto de partida en puntos ligeramente
diferentes, al cabo de cierto tiempo los estados en que se encuentran seran completamente distintos. No
interesa qué tan cercanos estén los puntos de partida, esta diferencia aunque infinitesimal, se amplificard y en
cierto tiempo los sistemas diferiran completamente.

Consideremos las implicaciones que tendria la sensibilidad a las condiciones iniciales si el mercado se
comportara en forma cadtica. Cualquier modelo que realicemos tendrd en cuenta precios anteriores del
instrumento a predecir y/o de otros mercados. Estos precios contienen ruido que viene de valores mal
tomados, valores faltantes y proyectados con los anteriores, etc., por lo que para comprobar la robustez del
modelo se deberian probar pequefias variaciones de los datos. Si los resultados son similares, suponemos que
el modelo es robusto, pero bajo la hipétesis de un mercado cadtico y sensible a las condiciones iniciales, los
distintos prondsticos a mediano o largo plazo diferirdn completamente.

! Los fenémenos no lineales con alta sensibilidad a las condiciones iniciales no eran desconocidos por los grandes
matematicos Y fisicos del siglo pasado, pero al no contar con computadoras, su analisis era muy engorroso y se hacia
impracticable. VVéase Sametband (1994) para una excelente introduccion a la complejidad.
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Lorenz (1995) fue uno de los primeros en aplicar las leyes del caos en la prediccién de las condiciones
meteorologicas. Su frase “el aleteo de una mariposa en Londres puede generar un huracan en Centro
América”, ejemplifica la sensibilidad a las condiciones iniciales. Predecir si llovera un determinado dia dentro
de 20 dias es y sera imposible, independiente de la tecnologia usada, porque jamas se podran medir las
condiciones iniciales con la suficiente exactitud requerida.

En septiembre de 1987 se reunieron en el Santa Fe Institute unas 20 personas de areas tan variadas como
economia, fisica, biologia y computacion para hablar de “la economia como un sistema complejo que
evoluciona” y a partir de aqui fueron aumentando los trabajos en dinamica no lineal, caos y complejidad
como modelos econémicos y aplicados al analisis de datos.

Consideremos un modelo simple del mercado de capitales en el que precios bajos atraen la atencion de
compradores, mientras que altos precios atraen a los vendedores (Baestaens 1994). Supongamos que los
precios aumentan con la demanda a una tasa a de la siguiente manera;

P =a*P

Supongamos también que mientras el precio sube los vendedores comienzan a presionar reduciendo el precio
a una tasa proporcional al cuadrado del precio anterior. Podemos expresar este modelo poco realista pero
instructivo como sigue (Peters 1991):

Po=a*R-a*R =a*R*1-R) ()

Si avale 2y el precio inicial 0.3, iterando (1), al cabo de algunos ciclos alcanzaremos el valor 0.5. Es mas, no
interesa con qué precio comencemos (mayor que 0 y menor que 1), tarde o temprano terminaremos en 0.5. Es
como si la ecuacién (1), al menos con a=2, tuviese un punto de atraccion en 0.5. Si ahora a pasa a valer 3 en
vez de 2, veremos que ya no hay un solo punto al cual converge, sino dos. A medida que aumenta el
parametro a notaremos que los valores de convergencia se irdn duplicando, hasta que a=4 en el que no existe
ningun valor de convergencia, sino que cada nueva iteracion parece dar como resultado un ndmero al azar.

Line Plot (LOGIST~1.STA 1v*40c)
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Ecuacion logistica con a=4 (simil aleatorio)

En este modelo los precios no se mueven por factores externos (noticias inesperadas) sino debido a la no
linealidad misma de la serie. A esta ecuacion se la conoce como Logistica y es una de las mas simples ya que
su valor depende solamente del valor anterior. No todas las ecuaciones dependen de un solo valor. Un modelo
un poco mas real del mercado seguramente dependera de varias variables.
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Para estudiar el comportamiento de una serie cadtica se utiliza un espacio de fases en el que cada variable que
contribuye al sistema se usa como eje de un grafico de dispersién. Por ejemplo la ecuacién de Henon se
genera sobre la base de dos variables:

Xt =1+ \Z —a*xf
Yia = b*xt

Si graficamos la variable x cuando a=1.4 y b=0.3 vemos que el comportamiento parece aleatorio aungue su
valor depende del valor anterior de x y del valor anterior de y. Cuando estudiamos el espacio de fases a través
de un grafico de dispersion de dos dimensiones con las variables x e y, vemos un objeto al que llamamos
atractor extrafio, en particular éste es el atractor de Henon. Los valores de la serie dependeran del valor
inicial de x e y, pero el atractor siempre se vera igual, no importa que valores iniciales elijamos.

Line Plot (HENON.STA 2v*40c)
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Scatterplot (HENOM.STA 2v199c)
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Si prestamos atencién a los detalles del atractor veremos que es un fractal cuya dimensién es 1.26. Es mas que
una linea y menos que un plano, tal como una serie de retornos del mercado de capitales (Peters 1991).

Por supuesto, no siempre contamos con las variables del sistema que genera una determinada serie de datos,
como es el caso del mercado de capitales. Cuando este es el caso, se pueden usar como variables para la
reconstruccion del espacio de fases, la serie a analizar y sucesivos valores anteriores de la misma (lags). De
esta manera se podria, por ejemplo, reconstruir el espacio de fases de la ecuacién de Henon usando x(t) y
X(t-1) en vez de x(y) e y(t).

Si en el espacio de fases de una serie de datos encontramos un atractor, entonces significa que cada punto de
la serie no tiene la total libertad de ubicarse en cualquier regién de este espacio, por lo que concluimos que los
datos no son independientes.

El BDS test

En enero de 1983 la revista Physical Review Letters publicé un articulo en el que P. Grassberger y I.
Procaccia comentan su creacion de una nueva manera de medir la dimension de un atractor a través de la
correlacion integral que indica la probabilidad de que un par de puntos de un atractor estén dentro de una
distancia R uno de otro. Este método estd basado en que el atractor que se forme crecerd hasta que la
dimension del espacio de fases sea mayor que la de éste. Una vez alcanzada esta dimension, ésta representara
la cantidad minima de variables que se necesitaran para modelar la serie de datos.

Brock, Hsieh y LeBaron (1991) utilizaron la correlacion integral como base para un test al que llamaron BDS
test y que mide cudnto se aparta una determinada serie de datos de una independiente e idénticamente
distribuida (11D). Para estimar intervalos de confianza, realizaron pruebas de Montecarlo sobre series 11D de
diferentes longitudes y publicaron las tablas correspondientes.

Ellos midieron varias series pertenecientes a mercados de capitales, entre ellas el S&P500 y encontraron
periodos en que estas series se apartaban en forma significativa de una serie 11D.
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Si realizamos el BDS test sobre el Merval o los bonos, también encontraremos periodos significativamente
diferentes de una serie 11D pero, antes de sacar conclusiones, analicemos estos resultados con detenimiento.

En Brock (1991) pagina 99, se analizaron dos periodos del S&P500, 1928-39 (spl) y 1950-62 (sp2),
encontrandose que spl es significativamente distinto de una serie 11D, pero sp2 no lo es. Si sobre estos
mismos periodos analizamos la varianza notaremos que en spl varia entre 1 y 3, pero en sp2 varia de 0.32 a
0.85. Estos cambios en la varianza (volatilidad) en sp1, pero no en sp2, nos sugieren que lo que realmente nos
dice el BDS test es que los retornos son claramente no 11D sélo en spl.

En conclusion, el BDS test aplicado a mercados financieros con cambios bruscos de volatilidades sélo nos
indica si la serie es 0 no 11D, pero no nos dice nada acerca de la independencia de sus datos, como lo sugieren
algunos autores (Lin 1997).

Resumiendo los analisis
Podemos resumir todo lo visto hasta ahora en los siguientes puntos:

1. La distribucién de los retornos logaritmicos estd muy lejos de ser normal. Los cambios abruptos de
precios se dan mucho mas a menudo de lo esperado segun la distribucién normal. En el caso del FRB
vimos que cambios de precios méas alla de 3 desviaciones estdndar son 5 veces superiores a lo esperado.

2. Los retornos diarios no muestran un coeficiente de correlacion lineal significativo. Parece que no
existiera ninguna relacion lineal en los datos.

3. El andlisis R/S no muestra un valor de H significativamente diferente de 0.5, por lo que a primera vista
pareciese que no existen correlaciones lineales o no lineales de corto o largo alcance. Una explicacién de
esto podria ser que la cantidad de datos es insuficiente con respecto a la cantidad normalmente necesaria
para este test.

4. El BDS test muestra que los datos contienen periodos que no son IID, aunque esto no nos dice nada
acerca de la independencia de los mismos.

En estos cuatro puntos no encontramos demasiada evidencia para afirmar o negar independencia de algun
tipo, por lo que el siguiente paso serd modelar las series de datos y analizar su desempefio frente a periodos
posteriores a los usados para parametrizar los modelos.

Considerando la posibilidad de que el mercado contenga relaciones no lineales una de las herramientas que se
ajustan son las redes neuronales, no sdlo por tener la capacidad de encontrar este tipo de relaciones, sino por
su robustez frente a datos con demasiado ruido.

Si podemos validar en forma confiable un modelo de redes neuronales aplicados a los mercados ya sea de
bonos como de acciones, podremos concluir que los precios no se comportan de forma independiente.

Para esto primero veremos algunas nociones de las redes neuronales para luego pasar directamente a la
problemética de construir modelos y medir su desempefio.

Redes neuronales

Desde los comienzos de las redes neuronales con la publicacion del paper de McCulloch y Pitts, pasando por
el perceptron de Rosenblatt en 1958, ha habido un enorme avance no solo en lo que se refiere a potencia de
computacion sino también en los diferentes tipos de redes y algoritmos que fueron surgiendo. Nosotros nos
concentraremos en un determinado tipo de redes a las que se las denomina “multilayer feed forward neural
networks”.

Hay dos maneras de ver una red neuronal, desde un punto de vista fisico, en el cual se hace una analogia con
las redes neuronales bioldgicas y desde un punto de vista matematico, haciendo un paralelo con los modelos
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estadisticos de regresion. Comenzaremos viendo una descripcion muy simplificada del funcionamiento del
cerebro a nivel neuronal para luego describir como se simula por medio de una computadora. Finalmente
compararemos una red neuronal con un modelo regresivo.

Un cerebro humano esta formado por unos 10 mil millones de neuronas que se conectan entre si, mediante 1
billén de conexiones aproximadamente. Cada neurona se compone de un nucleo, que es donde se procesa la
informacion en forma de impulsos electroquimicos, provenientes de otras neuronas y recibidos a través de las
dendritas, y de un haz de conduccién, llamado axon, por medio del cual se conecta a otras neuronas para
enviar su respuesta a los estimulos.

Neurona 1

Sinapsis

Dendritas

Neurona 2

La unién de una rama del axén de una neurona con una dentrita de otra recibe el nombre de sinapsis y regula
la fuerza de las conexiones en diferentes grados que van desde conexiones excitatorias hasta inhibitorias.
Cada vez que se aprende algo, se modifican las sinapsis, o lo que es lo mismo, cambia el grado de conexién
entre dos neuronas. Nuestra memoria reside en las sinapsis y es por ello que las células del cerebro o
neuronas, nunca mueren como las demas células. Si lo hicieran no tendriamos memoria de largo plazo.

Tomando las redes neuronales bioldgicas como modelo, nace a fines de los cincuenta, principios de los
sesenta, una nueva tecnologia de procesamiento de la informacion: las redes neuronales artificiales (RNA).
Basicamente una RNA consiste de elementos de procesamiento de informacion Ilamados neuronodos 6
simplemente neuronas que reciben datos provenientes de otras neuronas, los procesan y los envian a su vez, a
otras neuronas. Cada neurona realiza una suma ponderada por el grado de conexion de los datos que recibe,
simulando la sinapsis y finalmente aplica una funcién a esta suma para obtener un dato de salida.
Normalmente la funcion que aplica es no lineal y se la denomina funcion de transferencia, y se pueden citar
como ejemplos una tangente hiperbdlica o una sigmoide.
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En donde O se calcula como funcién de Y:

Y el valor Y es:

Las neuronas se agrupan en capas. La que recibe los datos se llama capa de entrada (input layer). Esta, a su
vez se conecta con una 0 mas capas intermedias (hidden layers), las que finalmente se conectan a la capa de
salida (output layer). Un gréfico aclara el funcionamiento:

Datos de salida

Datos de entrada

En este grafico la capa de entrada consta de 4 neuronas que se conectan con cada una de las 3 neuronas de la
capa intermedia. Por Gltimo, las 3 neuronas de la capa intermedia se conectan con la Gnica neurona de la capa
de salida.

Un cerebro tiene una gran estructura y la habilidad de construir sus propias reglas por medio de lo que
generalmente se conoce como “experiencia” (Haykin 1994). Para que una RNA pueda resolver un problema,
se utiliza el mismo procedimiento: que aprenda de la experiencia. En vez de darle las reglas en forma de “si
pasa A entonces haga B”, como un programa convencional, se utilizan ejemplos pertenecientes al dominio del
problema dado con sus correspondientes respuestas. Una vez procesados todos los ejemplos, incluso mas de
una vez cada uno si es necesario, la RNA habrd “aprendido” y estara lista para responder a problemas
similares que se le planteen. Se dice que la red esta entrenada. Podemos ver una RNA como un programa
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capaz de encontrar estructuras (patterns) en los datos y luego de entrenada puede reconocer estas estructuras
en nuevos datos que no se usaron para su entrenamiento. Ademas, y esto es muy importante, las estructuras no
tienen que ser idénticas, sino solo similares.

Veamos ahora una RNA desde un punto de vista matematico. La respuesta frente a una determinada
configuracion de los datos de entrada sera una combinacidn de los procesamientos individuales de cada
neurona. Por ejemplo, si designamos con x cada entrada que recibe la capa intermedia con n neuronas, cada
neurona i dara como resultado:

H, = f(a, +a,X +a,X, +..+a,X,)
En donde los coeficientes a representan los ponderadores antes mencionados. A su vez, si suponemos que
solo tenemos una capa intermedia que se conecta a una sola neurona de salida, ésta Ultima recibird como
entrada los Hi y su resultado sera:

Y = f(b, +bH, +b,H, +..+ b H,)

Entrenar una red significa encontrar el conjunto de ponderadores (a,b) que minimicen los errores dados por

E= Ei‘,(Ri _Yi)2

NSz

en donde R es la respuesta buscada en cada uno de los n ejemplos e Y es la respuesta dada por la RNA.
Recordemos que la funcion de transferencia f introduce la no linealidad en la respuesta. Encontrar los
ponderadores es equivalente a encontrar los coeficientes en una regresion lineal, en donde los datos de
entrenamientos representan las variables independientes y cada respuesta la variable dependiente.

Los ponderadores que minimizan el error E dado més arriba en una RNA se encuentran mediante un
algoritmo, y el mas conocido es “Backpropagation”. Este consta de dos fases, la primera evalua el error
cometido por la red a la que se le presenta uno 0 mas ejemplos. La segunda usa este error para modificar los
ponderadores. Todo este proceso, llamado entrenamiento, se repite una y otra vez con todos los ejemplos
disponibles hasta que el error haya alcanzado un determinado nivel prefijado.

El entrenamiento no garantiza obtener el menor error posible, por lo que siempre es aconsejable reentrenar
una RNA varias veces comenzando siempre con un conjunto de ponderadores distintos y al azar.

Hasta ahora vimos que el objetivo del entrenamiento en una RNA es minimizar los errores cometidos en la
evaluacion de un conjunto de ejemplos, al que llamamos conjunto de entrenamiento (training set). ¢Pero qué
pasa si ahora fijamos los ponderadores de una red ya entrenada y le presentamos un nuevo conjunto de
ejemplos diferentes a todos los del entrenamiento? La respuesta debiera ser: los errores cometidos son
similares a los cometidos en el conjunto de entrenamiento. Pero no siempre es asi. Depende entre otros
factores de qué tan similares son los nuevos datos y qué tan bueno fue el entrenamiento.

La importancia de la similitud de los datos es muy intuitiva, si los ejemplos del entrenamiento contienen
solamente estructuras que corresponden a mercados en alza, probablemente un mercado en baja sea dificil de
reconocer. Por qué un entrenamiento puede resultar regular o malo, es un poco mas dificil de explicar.

Los datos, 0 ejemplos que usamos para entrenar una RNA son el resultado de las transacciones que se realizan

en el mercado de capitales a través del tiempo, por ello se los llama series de tiempo, y se las puede registrar
por cada transaccidn (tic), o cada determinado tiempo, por ejemplo cada hora, dia, mes o afio.
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Si deseamos un sistema que nos permita predecir que sucedera dentro de los préximos 5 dias, probablemente
no tenga sentido utilizar datos registrados con cada tic (datos intradiarios), sino que lo ideal sera usar datos
diarios. Pero los datos diarios registran el precio perteneciente a la Gltima transaccion del dia que no tiene
porque ser un precio representativo del dia. A esto hay que agregar que existen mercados, como el de los
bonos Brady, en los que se dificulta tener un precio de cierre y en los que s6lo se cuenta con un precio de
oferta y de compra (bid y ask).

Cuando trabajamos con series histéricas debemos estar preparados a encontrarnos con datos mal tomados,
irreales (por ejemplo el promedio entre el precio de oferta y de compra), poco representativos del dia,
ausencia de datos, etc. Todos estos factores agregan ruido o errores a nuestra serie de datos.

Otro problema es la cantidad disponible. Normalmente no contamos con demasiados datos, y si lo son, cabe
preguntarse si las relaciones o estructuras que queremos descubrir con una RNA se mantienen en el tiempo.
Por ejemplo, ¢las relaciones entre los mercados antes y después del Tequila seran las mismas?

Vimos que entrenar una red es buscar los ponderadores que minimizan los errores cometidos por ésta en todos
los datos de entrenamiento. Pero estos datos contienen ruido, y si no somos cautelosos es probable que la red
en vez de encontrar estructuras solamente memorice estos datos con ruido. Ser cauteloso significa no
sobredimensionar una RNA y no tratar de obtener el menor error posible, y una manera de lograrlo es
suspender el entrenamiento de tanto en tanto y verificar la red con otros datos diferentes, llamado datos de
validacion. En el momento que el error sobre los datos de validacion deje de disminuir, debemos dejar de
entrenar.

Caso Real

La siguiente es una descripcion simplificada de un modelo basado en redes neuronales que sirve para operar
tanto sea en el mercado de bonos como en el de acciones de Argentina.

Como datos de entrada al modelo se tomaron algunos bonos Brady y el indice Merval. Lo que se trata de
pronosticar es como sera la tendencia de las préximas 2 semanas del bono FRB. Si la tendencia pronosticada
indica una baja del bono se debe vender, caso contrario se debe comprar.

En el modelo ya desarrollado y probado se aprecian algunos aspectos que lo hacen muy valuable:
e El cambio de tendencia pronosticado se detecta con dos dias de anticipacion.

e La cantidad de cambios de tendencia, si bien depende de la volatilidad del mercado, es de unas 2
veces al mes en promedio, lo que minimiza el impacto de los costos de entrada y salida al mercado.

e Debido al horizonte pronosticado (dos semanas) y considerando la alta correlacion entre los bonos, el
Merval y las acciones que lo componen, se puede usar con cualquiera de ellos.

El método usado para la eleccion del modelo, més all4 de cuestiones técnicas, tiene que ver con la
confiabilidad del mismo. Por ejemplo, cémo asegurar que el desempefio logrado con datos histéricos se
mantendra en el futuro. Después de todo, es muy facil justificar y “pronosticar” un determinado
acontecimiento después de que sucedio.

Una primera estrategia para robustecer la eleccién de un modelo es dejar de lado los Gltimos meses y usar el
resto de datos para el desarrollo del mismo. Luego de finalizado el modelo se deberia probar con los datos
apartados. Si los resultados obtenidos fuesen similares a los anteriores, es probable que la red neuronal haya
aprendido las relaciones. Cuanto mayor sea el periodo de pruebas, mayor sera la confiabilidad. Pero debido a
la poca cantidad de datos (recuérdese que a partir del Tequila probablemente cambid la estructura interna del
mercado) con los que se cuenta, debe existir un compromiso entre cantidad de datos para entrenar una red y
cantidad de datos para probarla.
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Por supuesto, la mejor prueba es la que se realiza en tiempo real (exante) y el modelo que aqui se presenta fue
medido de las dos maneras. Entre enero y julio del afio 1999 se realizé una prueba con datos histdricos
(expost) pero no utilizados por la red en su entrenamiento. Desde agosto de 1999 hasta febrero del 2000 la

prueba es en tiempo real (exante), esto significa que el pronostico es real y con dos dias de anticipacién a los
hechos.

Retornos
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Los mejores rendimientos del modelo en la primera mitad del afio 1999 respecto del la segunda mitad, se
explican con la diferente volatilidad que tuvieron esos periodos. Durante el primer semestre la volatilidad del
bono FRB fue de 1.4% mientras que el segundo tuvo una volatilidad menor a la mitad, un 0.59%.

Las experiencias con modelos sobre otros mercados y durante otros periodos muestran que a mayor

volatilidad mayor rendimiento. Es mas, la mayoria de los modelos desarrollados tuvieron excelentes
rendimientos durante las crisis.

Modelar el mercado de capitales no es una tarea facil y no existe consenso sobre si tiene sentido hacerlo o no,

ya que muchos suponen que los precios siguen un camino al azar. Probablemente haya periodos aleatorios y

otros no tanto. Las redes neuronales muestran que esto podria ser verdad y quizas relacionado con los
cambios de volatilidades.

Los resultados obtenidos hasta ahora han sido lo suficientemente buenos como para seguir investigando en
redes neuronales y sus aplicaciones en mercados de capitales.
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